两数的平方和加上两数的积再乘以两数的差,所得到的积就等于两数的立方差。用公式表达即:a3-b3=(a-b)(a2+ab+b2)。
由于立方项不好拆分,但是我们学过,遇到高阶项要尽量采用低阶项来对其进行简化处理,所以很容易想到a2,同时由于对a3降阶的同时还要和b3进行结合,所以很容易想到a2b这样一个加法项,因此对上式采取分别加和减一个a2b项,得到下式,同时进行相应的合并:
a3-b3=a3-b3+a2b-a2b
=a2(a-b)+b(a2-b2)
=a2(a-b)+b(a+b)(a-b)
=[a2+b(a+b)](a-b)
=(a-b)(a2+ab+b2)
证得:
a3-b3=(a-b)(a2+ab+b2)
立方差公式与立方和公式共称为完全立方公式。
立方差公式:a3-b3=(a-b)(a2+ab+b2)
立方和公式:a3+b3=(a+b)(a2-ab+b2)
上一篇:常德重点高中有哪些
下一篇:常见的化学变化有哪些