学习数学的时候总结知识点是非常重要的一个环节,下面总结了初三的重点知识点,供大家参考。
二元一次方程组1.定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。
2.二元一次方程组的解法
(1)代入法
由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法
在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法
将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法
当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
不等式的判定1.常见的不等号有“>”“<”“≤” “≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
2.在不等式“a>b”或“a
3.不等号的开口所对的数较大,不等号的尖头所对的数较小;
4.在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等。
三角形中位线定理的作用位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。
一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。
两边若负中间正,底差平方相反数。
二次函数解析式的表示方法1.一般式:y=ax2+bx+c(a,b,c为常数,a≠0),如:y=2x2+3x+4;
2.顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0),如:y=2(x-5)2+3;
3.两根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是抛物线与x轴两交点的横坐标),如:y=2(x-1)(x+3).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b2-4ac≥0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化。
二次函数的平移规律口诀加左减右,加上减下。
意思就是当二次函数写成下面这个样子时:
y=a(x+b)²+c,只要将y=ax²的函数图像按以下规律平移。
(1)b>0时,图像向左平移b个单位(加左)。
(2)b<0时,图像向右平移b个单位(减右)。
(3)c>0时,图像向上平移c个单位(加上)。
(4)c<0时,图像向下平移c个单位(减下)。
上一篇:初二物理学习方法有哪些
下一篇:扁鹊治病告诉我们什么道理