初中数学的知识点很多,建议同学们在学习的时候建立知识框架,方便系统的掌握知识点。接下来小编给大家总结归纳了初中数学的必考知识点,供参考。
直角三角形1、有一个角为90°的三角形,叫做直角三角形。
直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:2、性质性质1:直角三角形两直角边的平方和等于斜边的平方
性质2:在直角三角形中,两个锐角互余
性质3:在直角三角形中,斜边上的中线等于斜边的一半。(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:射影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项
∠ACB=90°
CD⊥AB(4)ABCD=ACBC(可用面积来证明)
(5)直角三角形的外接圆的半径R=1/2BC,
(6)直角三角形的内切圆的半径r=1/2(AB+AC-BC)(公式一);
r=AB*AC/(AB+BC+CA)(公式二)
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
3、判定方法:
判定1:有一个角为90°的三角形是直角三角形。
判定2:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形。
判定3:勾股定理的逆定理
如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
判定4:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。
判定5:两个锐角互余的三角形是直角三角形。
判定6:在直角三角形中,60度内角所对的直角边等于斜边的根号3/2
判定7:在证明直角三角形全等的时候可以利用HL两个三角形的斜边长对应相等以及一个直角边对应相等可判断两直角
实数的知识点1、数轴------规定了原点、正方向、单位长度的直线,叫做数轴。实数和数轴上的点是一一对应的。
2、相反数-----只有符号不同的两个数叫做互为相反数。
(1)几何意义:在数轴上,表示相反的两个点位于原点的两侧,且到原点的距离相等,关于原点对称;
(2)实数a的相反数为-a;
(3)a和b互为相反数则,a+b=0;
(4)相反数是它本身的数是0。
3、倒数----乘积是1的两个数互为倒数。
(1)实数a的倒数是1/a,其中a≠0;
(2)a和b互为倒数则,a*b=1;
(3)倒数是它本身的数有-1和1。
4、绝对值----一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
绝对值的性质:即,(1)、a>0时,|a|=±a;(2)|a|=|b|,则a=b或a+b=0;(2)|a|=|b|,则a=b或a+b=0;(3)任意实数的绝对值具有非负性,即|a|≥0;(4)含有绝对值代数式的化简、运算,首先考虑代数式的性质,即正负性,再根据绝对值的性质去掉绝对值符号进行化简、运算。
5、实数的分类:有理数和无理数。
常见无理数种类:
(1)具有特殊意义的常数,例如:π、π-1、π+4、9π等;
(2)特殊结构类型,例如:0.101001000100001.(每两个1之间0的个数依次增加1)等无限不循环小数;
(3)根号类型,例如:、等不能开的尽方的二次根式;当然具有根号,但是能开方就是有理数。
二次函数1、二次函数的三种表达式
二次函数的一般式为:y=ax²+bx+c(a≠0)。
二次函数的顶点式:y=a(x-h)²+k 顶点坐标为(h,k)
二次函数的交点式:y=a(x-x₁)(x-x₂) 函数与图像交于(x₁,0)和(x₂,0)
2、二次函数的性质
(1)二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。
(2)二次项系数a决定抛物线的开口方向和大小。
(3)一次项系数b和二次项系数a共同决定对称轴的位置。
(4)常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。
3、二次函数的对称轴公式
二次函数图像是轴对称图形。对称轴为直线x=-b/2a。
对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
a,b同号,对称轴在y轴左侧;
a,b异号,对称轴在y轴右侧。
1、定义:平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
2、抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0).
3、抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
4、二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
5、一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
6、常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。
上一篇:水浒传人物介绍和事迹概括
下一篇:分封制的内容和特点