无理数也称为无限不循环小数,不能写作两整数之比。接下来分享无理数集合符号及性质,供参考。
无理数集合的表示方法在数学中,无理数是所有不是有理数字的实数,实数集的表示方法为Q,无理数集相当于实数集中有理数集的补集,所以无理数集合符号为CrQ。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
(1)无理数加(减)无理数既可以是无理数又可以是有理数;
(2)无理数乘(除)无理数既可以是无理数又可以是有理数;
(3)无理数加(减)有理数一定是无理数;
(4)无理数乘(除)一个非0有理数一定是无理数。
无理数的分类一是无限不循环小数,例如:0.01001000100001……等;
二是根式,例如:√2,√3,(√5-1)/2等;
三是函数式,例如:lg2,sin1度等;
四是专用符号,如π、e、y。
无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以精确地表示π,也不重复。
上一篇:什么是虚数单位
下一篇:大江歌罢掉头东这首诗的意思是什么