在三角形的分类中,一般认为有两边相等的三角形,且两个底角相等的三角形叫等腰三角形,相等的两个边称为这个三角形的腰。而三边相等的三角形称为等边三角形。
等腰三角形的两个底角度数相等(简写成“等边对等角”)。
等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“三线合一”)。
等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
等腰三角形中腰的平方等于高的平方加底的一半的平方(勾股定理)
等腰三角形的判定的方式定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:
在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。
显然,以上三条定理是“三线合一”的逆定理。
上一篇:棱台的侧棱一定相等吗
下一篇:凸透镜的三条特殊光线