二元二次方程的解法
2025-06-23 14:25:28
0

一般用代入法求解,即将方程组中的二元一次方程,用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。

二元二次方程求解

二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。

(1)有两组相等的实数解。

(2)有两组不相等的实数解;

(3)没有实数解。解:将②代入①,整理得二次方程③的判别式

(4)当a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。

(5)当a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。

(6)当a>2时,方程③没有实数根,因而原方程没有实数解。

“代入消元法”和“加减消元法”解方程组.

代入消元法

(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.这种解方程组的方法叫做代入消元法,简称代入法。

(2)代入法解二元一次方程组的步骤

①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;

②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.);

③解这个一元一次方程,求出未知数的值;

④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;

⑤用“{”联立两个未知数的值,就是方程组的解;

⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

加减消元法

(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.

(2)加减法解二元一次方程组的步骤

①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;

②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);

③解这个一元一次方程,求出未知数的值;

④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;

⑤用“{”联立两个未知数的值,就是方程组的解;

⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

二元二次方程例题

x+y=a①

x²+y²=b②

由1得y=a-x③

将③代如②得:

x²+(a-x)²=b

即2x²-2ax+(a²-b)=0

若2b-a²>=0

则解之得:

x1=(a+√(2b-a²))/2

x2=(a-√(2b-a²))/2

再由③式解出相应的y1,y2。

相关内容

热门资讯

suggest to do和s... suggest to do与suggest doing用法上的区别为:用法上意思不同、用法不同、用法...
begin doing和beg... begin doing指做某事的第一个步骤、第一个行动或第一部分,强调某种状态的“开端”,特别是较缓...
排列组合Cn和An公式 具体怎... 排列组合Cn的计算公式是C(n,m)=A(n,m)/m!=n(n-1)(n-2)(n-m+1)/m。...
陈情表原文及鉴赏 《陈情表》是三国两晋时期文学家李密写给晋武帝的奏章。文章从自己幼年的不幸遭遇写起,说明自己与祖母相依...
on the tree和in ... on the tree更注重其表面性,常用于修饰果实,树叶,外在的物品或记号;而in the tre...
大专动物医学专业就业前景 好不... 随着国家对农业的重视,学校自身实力、知名度逐渐提高,就业前景也非常好,具体来看一下!大专动物医学专业...
sports meeting和... 习惯用语不同、含义不同、适用的场合不同等,sports meeting:是英式英语,表示运动会;sp...
长风破浪会有时,直挂云帆济沧海... “长风破浪会有时,直挂云帆济沧海”意为尽管前路障碍重重,但仍将会有一天会乘长风破万里浪,挂上云帆,横...
小众而有深意的英文单词 生僻美... 我们学过的英语单词有很多,其中有不少寓意美好的单词,如petrichor、limerence、ata...
not only but al... not only……but also……有就近原则。当not only……but also……连接两...

最新资讯

师说原文及赏析 《师说》是唐代文学家韩愈创作的一篇议论文。文章阐说从师求学的道理,讽刺耻于相师的世态,教育了青年,起...
形容美食的古诗有哪些 人世间,唯有爱与美食不可辜负,爱已经辜负的太多,美食就不能再辜负了。古往今来,人们从没放弃对美食的追...
辛亥革命爆发的历史条件是什么 辛亥革命爆发的历史条件:1、民族危机加深,社会矛盾激化。2、清末“新政”破产,“皇族内阁”的产生使得...
洋务运动的性质是什么 洋务运动是清朝封建统治阶级中的洋务派为了维护清朝的封建统治而实行的一场自救改革运动,即具有进步性,,...
牛顿第二定律主要内容及性质 牛顿第二定律即牛顿第二运动定律。物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作...
中国四大淡水湖分别是什么 中国四大淡水湖分别是:鄱阳湖、洞庭湖、太湖、洪泽湖。别是什么" alt="中国四大淡水湖分别是什么"...
修饰比较级的词有哪些 修饰比较级的词主要有:a bit、a little、rather、by far、a lot、a gr...
高中生物必修三必背知识点 高中生物需要背的知识点很多,下面是为大家整理的高二生物必修三的知识点,供大家学习参考!高中生物必修三...
陶渊明最有名的诗 陶渊明的诗作有很多,《桃花源记》是他的代表作之一,是《桃花源诗》的序言,选自《陶渊明集》。此文借武陵...
20条高中英语语法 英语语法的学习不是一蹴而就的,要逐步从简单到难的学起,下面是小编整理一些高中英语的语法,希望对你有帮...